Апхангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатепинбупг (343)384-55-89 Иваново (4932)77-34-06

H-money (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 **Москва** (495)268-04-70 Мурманск (8152)59-64-93 абережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омек (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31

Пермъ (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69

CVDEVT (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 **Череповец** (8202)49-02-64 Ярославль (4852)69-52-93

https://encont.nt-rt.ru/ || acl@nt-rt.ru

ТЕПЛОСЧЕТЧИКИ -	РЕГИСТРАТОРЫ
ЭНКС	HT

Внесены в Государственный реестр средств измерений

Регистрационный № 39324-08

Взамен

Выпускаются по техническим условиям ЭНКТ.407251.001ТУ

Назначение и область применения

Теплосчетчики - регистраторы ЭНКОНТ предназначены для измерения количества тепловой энергии, количества теплоносителя, потребляемых в системах теплоснабжения и теплопотребления, выполнения функций контроля и регистрации параметров теплового и гидравлического режимов эксплуатации этих систем.

Теплосчетчики - регистраторы ЭНКОНТ могут применяться автономно или в составе оборудования узлов учета тепловой энергии на предприятиях тепловых сетей, на теплопунктах объектов промышленного и бытового назначения, а также в различных отраслях промышленности для контроля и регулирования технологических процессов.

Описание

Гіринцип работы теплосчетчиков-регистраторов ЭНКОНТ состоит в измерении и преобразовании измерительнным блоком сигналов с других составных частей, установленных на прямом и обратном трубопроводах системы теплоснабжения, в значения объемных (массовых) расходов теплоносителя, температур и давлений теплоносителя. По полученным значениям в измерительном блоке производятся вычисления тепловой мощности и тепловой энергии, а также количества теплоносителя, выраженного в массовом или объемных единицах.

Теплосчетчики - регистраторы ЭНКОНТ (далее - теплосчетчики) являются ультразвуковым средством измерения расхода и количества теплоносителя время - импульсного типа с последующим измерением количества тепловой энергии и количества теплоносителя с помощью вычислительного устройства на базе измерения температуры теплоносителя с помощью термосопротивления с градуировочной характеристикой 100П или 100Pt с помощью установленных формул. В состав теплосчетчиков входят следующие компоненты:

- измерительный блок (далее -ИБ);
- ультразвуковые преобразователи расхода (далее -УПР);

- термопреобразователи сопротивления (далее -TC);
- преобразователи давления (далее -ПД);
- блок питания (далее БП).

Измерение расхода в теплосчетчиках основано на измерении времени распространения ультразвуковых импульсов в потоке теплоносителя через УПР. Разность между временами распространения ультразвуковых импульсов в прямом и обратном направлениях относительно движения теплоносителя по УПР преобразуется в зависимости от параметров УПР в значение объемного расхода. Возбуждение ультразвуковых колебаний осуществляется парой пьезоэлектрических преобразователей (далее - ПЭП), образующих измерительный луч.

УПР изготавливаются согласно типоразмерам по условно проходным диаметрам с указанием максимального и переходного значениям расхода теплоносителя в соответствии таблицей 1.

Таблица 1

Ду	Объемный расход, м³ /ч			
ДУ	Gmax (максимальный)	Gt (переходный)	Gmin (минимальный)	Glim (наименьший)
15	6	0,12	0,06	0,006
25	17	0,34	0,17	0,02
32	30	0,6	0,3	0,03
40	45	0,9	0,45	0,05
50	70	1,4	0,7	0,07
65	120	2,4	1,2	0,12
80	180	3,6	1,8	0,18
100	280	5,6	2,8	0,3
150	640	12,8	6,4	0,6
200	1130	22,6	11,3	1,0
250	1760	35,2	18	2,0
300	2540	51	25,4	3,0
350	3460	70	35	4,0
400	4520	90	45,2	5,0
500	7060	141	71	6,0
600	10180	204	102	10,0
700	13850	277	140	15,0
800	18000	360	180	20,0
900	22900	460	230	23,0
1000	28000	560	280	30,0

Примечание: В диапазоне расходов меньше Gmin, погрешности теплосчетчика при измерении расходов, тепловой энергии не нормируются. Glim - наименьший расход, фиксируемый теплосчетчиком.

В зависимости от количества измерительных лучей УПР могут быть однолучевыми или двухлучевыми. УПР представляют собой отрезок трубы из нержавеющей стали, к торцам которой приварены два фланца по ГОСТ 12815-80. В средней зоне трубы приварены держатели, служащие для установки пары ПЭП. УПР с диаметром условного прохода больше 200 мм изготавливаются из черной стали и покрываются коррозионно-стойкой эпоксидной эмалью.

Ультразвуковые преобразователи расхода выпускаются следующих модификаций:

DxxxE - двухлучевой УПР, поверяемый на эталонной расходомерной установке;

DxxxI - двухлучевой УПР, поверяемый беспроливным методом:

SxxxE - однолучевой УПР, поверяемый на эталонной расходомерной установке;

SxxxI - однолучевой УПР, поверяемый беспроливным методом;

Измерение температуры в теплосчетчиках основано на измерении напряжения на чувствительном элементе ТС и дальнейшем преобразовании в фактические значения температуры. Преобразование осуществляется в соответствии с номинальной статической характеристикой ТС по ГОСТ 6651-94.

Измерение давления в теплосчетчиках основано на измерении сигнала силы постоянного тока от ПД в диапазоне 4-20 мА и преобразовании измеренных значений в фактические значения давления.

ТС и ПД, которые могут входить в состав теплосчетчиков, указаны в таблице 2.

Таблица 2

Тип преобразователя	Условное обозначение	№ Госреестра
	КТПТР-01	14638-05
	КТПТР - 05	17468-98
	КТПТР - 06	21605-06
тс	КТСПР - 001	21867-01
1	КТСП - Н	24831-06
	ТСП - Р	22557-02
	TПТ - 1	14640-95
	TCП - 001	13551-99
	KPT-9	24564-07
1	KPT-5	20409-00
	HT	26817-04
ПД	МИДА-ДИ-12П	17635-03
	МИДА-ДИ-13П	17636-06
	MT100	13094-07
	САПФИР22МП	19056-05

ИБ теплосчетчика регистрирует в энергонезависимых архивах:

- время работы;
- 840 среднечасовых и 90 среднесуточных значений измеренных температур теплоносителя;
- 840 среднечасовых значений измеренных давлений теплоносителя:
- 840 значений количества прошедшего теплоносителя и тепловой энергии за каждый час;
- 90 значений количества прошедшего теплоносителя и тепловой энергии за каждые сутки.
- 12 значений количества прошедшего теплоносителя и тепловой энергии за каждый месяц.
- нештатные ситуации.

Все измеренные, расчетные, установочные и архивированные параметры выводятся на индикацию.

Теплосчетчики могут передавать в системы централизованного учета энергоносителей информацию об измеренных и зарегистрированных параметрах теплоносителя по цифровым каналам связи с помощью стандартных устройств.

Теплосчетчики позволяют обслуживать до 4-х трубопроводов на источнике теплоты или в системе теплопотребления и вести учет тепловой энергии по двум независимым теплообменным контурам. Алгоритмы вычисления тепловой энергии в зависимости от вида контролируемой системы могут устанавливаться потребителем на месте эксплуатации по любому из уравнений, не противоречащим МИ 2412-97 и "Правилам учета тепловой энергии".

В зависимости от режимов эксплуатации открытых и закрытых систем теплоснабжения и от вида модификации УПР теплосчетчики соответствуют классам A, B и C по ГОСТ Р 51649-2000 и уравнениям измерения тепловой энергии по МИ 2412-97.

Класс	режим эксплуатации системы и размещение точек измерения массы теплоносителя		Примечание
	закрытая система : $0.98 \le f_{max} \le 1$;		
	$Q = \sum_{i=0}^{n} M_i (h_{no\partial} \cdot h_{o\partial\rho})_i ; M = M_{no\partial} = M_{o\partial\rho}$		
	открытая система : f _{max} < 0,98;	,	
С	$Q = \sum_{i=0}^{n} M_{nodi} \cdot (h_1 - h_2)_i + M_{nni} \cdot (h_2 - h_{xe})_i$		
	открытая система :	рытая система : f _{max} < 0,65;	
	$Q = \sum_{i=0} M_{no\partial i} \cdot (h_1 - h_2)_i + (M_{no\partial} - M_{obp})_i \cdot (h_2 - h_{xe})_i$	f _{max} < 0,55;	УПР модификаций SxxxxE и DxxxxI
В	открытая система :	$0,65 \leq f_{\text{max}} \leq 0,77$	УПР модификаций DxxxE
В	$Q = \sum_{i=0} M_{no\partial i} \cdot (h_1 - h_2)_i + (M_{no\partial} - M_{o6p})_i \cdot (h_2 - h_{xe})_i$	$0,55 \le f_{\text{max}} < 0,65$	УПР модификаций SxxxxE и DxxxxI
	открытая система :	$0,77 < f_{\text{max}} < 0.85$	УПР модификаций DxxxE
A	$Q = \sum_{i=1}^{n} M_{no\delta i} \cdot (h_1 - h_2)_i + (M_{no\delta} - M_{o\delta\rho})_i \cdot (h_2 - h_{xe})_i$	$0,65 \leq f_{\text{max}} \leq 0,73$	УПР модификаций SxxxxE и DxxxxI
	i=0	f _{max} < 0,64	УПР модификаций SxxxxI

 M_{nod} , - количество теплоносителя соответственно в подающем и обратном трубопроводах, измеряемые непосредственно по каналам расхода;

Основные технические характеристики

Диапазон измеряемых расходов в соответствии с таблицей 1.

Пределы допускаемой относительной погрешности теплосчетчиков по каналам измерения массового и объемного расхода теплоносителя соответствуют таблице 3.

Таблица 3

Диапазон расхода	Пределы допускаемой относительной погрешности ,%, для модификаций УПР			
	DxxxE	DxxxI	SxxxE	SxxxI
$Q_{min} \leq Q < Q_t$	± 1,0	± 1,5	± 1,5	± 2,0
$Q_t \leq Q \leq Q_{max}$	± 0,5	± 1,0	± 1,0	± 1,5

Пределы допускаемых абсолютных погрешностей теплосчетчиков при измерении температуры Δ_t и разности температур $\Delta_{\Delta t}$ соответствуют значениям, указанным в таблице 4.

Таблица 4

Класс применяемых ТС	Пределы абсолютной погрешности при измерении, ⁰С		
Попасс применяемых то	Δ_t -температуры	$\Delta_{\Delta t}$ -разности температур	
A	±(0,28+0.0024t)	± (0,075+0,001∆t)	
В	±(0,36+0.0036t)	± (0,12+0,002∆t)	

Пределы допускаемых относительных погрешностей теплосчетчиков при измерении тепловой энергии в открытых системах теплоснабжения соответствуют значениям, указанным в таблице 5.1.

 M_{nn} - количество теплоносителя идущего на разбор (подпитка, ГВС и т.п), измеряемое непосредственно каналом расхода;

 $f_{max} = (M_{oбp}/M_{nod})$ - показатель разбора теплоносителя - максимально возможное значение отношения количеств теплоносителя, проходящих по обратному и подающему трубопроводам

Коэффициент Диапазон измерений разбора тепло-		Предел допускаемой относительной погрешности $\delta_{\mathbf{Q}}$, % при применении модификаций УПР		
носителя		DxxxE	DxxxI и SxxxE	SxxxI
	3 ≤ Δt < 10	± 3,3	± 5,0	± 6,4
f _{max} ≤0,55	10 ≤ Δt < 20	± 3,0	± 4,4	± 5,8
THUX 7 -	20 ≤ Δt < 145	± 2,6	± 3,7	± 5,0
	3 ≤ Δt < 10	± 4,4	± 6,7	± 8,6
$0,55 < f_{max} \le 0,65$	10 ≤ Δt < 20	± 3,9	± 5,8	± 7,6
,	20 ≤ Δt < 145	± 3,3	± 4,9	± 6,3
•	3 ≤ Δt < 10	± 6,5	± 9,7	-
$0.65 < f_{\text{max}} \le 0.75$	10 ≤ Δt < 20	± 5,4	± 8,1	-
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20 ≤ Δt < 145	± 4,3	± 6,4	-
	3 ≤ Δt < 10	_	-	_
$0.75 < f_{\text{max}} < 0.85$	10 ≤ Δt < 20	± 7,9	-	
,ax , -	20 ≤ Δt < 145	± 5,8	± 8,7	-

Погрешности пронормированы для предельных режимов : $t_{xB} = +5^{\circ}C$ и $0.02 \le k \le 0.13$;

где $\mathbf{k} = (t_{nog} - t_{obp}) / t_{nog}$. Измерение расхода теплоносителя идущего на разбор осуществляется на основе измерений расхода в подающем и обратном трубопроводах: $f_{max} = M_{obp} / M_{nog}$ Знак « - « означает, что погрешность не нормируется.

Пределы допускаемых относительных погрешностей δ_Q теплосчетчиков при измерении тепловой энергии в закрытой системе теплоснабжения соответствуют значениям, указанным в таблице 5.2.

Таблица 5.2

Диапазон измерений разности температур, °С	Предел допускаемой относительной погрешности $\delta_{\mathbf{Q}}$, % при применении модификаций УПР			
разпости температур, С	DxxxE	DxxxI и SxxxE	SxxxI	
3 ≤ Δt < 10	± 2,7 (± 4,2)	± 3 (± 4,3)	± 3,2 (± 4,5)	
10 ≤ Δt < 20	± 1,25 (± 1,6)	± 1,7 (± 2,0)	± 2,1 (± 2,3)	
20 ≤ Δt < 145	± 1,1 (±1,2) ± 1,5 (± 1,6) ± 2,0 (± 2,1)			

Значения в скобках соответствуют при применении в составе теплосчетчиков термопреобразователей сопротивления класса В, без скобок –класса А.

Пределы допускаемой относительной погрешности теплосчетчика при измерении избыточного давления составляют ± 2,0%;

- в диапазоне измеряемого давления от 0,26 Pmax до Pmax, при использовании ПД с классом точности 0,5;
- в диапазоне измеряемого давления от 0,13 Pmax до Pmax, при использовании ПД с классом точности 0,25.

Пределы допускаемой относительной погрешности теплосчетчика при измерении времени наработки составляют - ± 0,1%.

Пределы допускаемых относительных погрешностей ИБ составляют:

- при измерении объемного (массового) расхода ± 0,4%, при вычислении объема (массы) ± 0,5% во всем диапазоне измеряемых расходов;
- при преобразовании сигналов постоянного тока от ПД ± 0,5% во всем диапазоне измеряемых давлений;
- при вычислении количества тепловой энергии и тепловой мощности ± 0,2%.

Пределы допускаемых абсолютных погрешностей ИБ составляют:

- \pm 0,2 °C при преобразовании сигналов от TC в значение температуры в диапазоне от 0 до +150 °C;
- $\pm (0.05 + 0.001 | \Delta t |)$ °C при преобразовании разности сигналов между двумя подобранными в пару ТС в значение разности температур | Δt | в диапазоне от 3 до 145 °C.

Условия эксплуатации теплосчетчиков:

• температура окружающего воздуха, ⁰С :

для ИБ, ТС , ПД и БП от +5 до +50 для УПР от минус 40 до +60

• относительная влажность при 35 °C и более низких температурах без конденсации влаги, %

не более 93

• атмосферное давление, кПа

- от 84,0 до 107,0
- полное заполнение трубопровода теплоносителем в месте установки УПР;
- содержание твердых и газообразных веществ в теплоносителе не более 1% от объема в УПР
- теплоноситель с характеристиками:

наибольшая температура , ⁰C до +200 максимальная скорость, м/с до 10 избыточное давление , МПа до 2,5 число Рейнольдса для потока,не менее 5000 вода по СанПиН 4723-88, ГОСТ Р.51232-98, либо другая звукопроводящая жидкость

Устойчивость к механическим воздействиям, группа исполнения (ГОСТ12297):

• ИБ L3

• УПР и TC N3

• ПД G2

Степень защиты от проникновения пыли, посторонних тел и воды по ГОСТ 14254:

• YTP v TC

• ПД G2

Баласания в соот в том в соот в с

Параметры электропитания : от 18 до 36 В напряжения постоянного тока Максимальная потребляемая мощность (без учета питания ПД), Вт

Габаритные размеры, мм:

• ИБ не более 170x170x65

• УПР (Ду15....Ду1000) не более 340x80......1400x1255

Масса, кг

ИБ

• ИБ не более 2,5

Средняя наработка на отказ ИБ теплосчетчиков не менее 50000 часов.

Полный средний срок службы теплосчетчика не менее 12 лет.

Знак утверждения типа

Знак утверждения типа средства измерения наносится на лицевую панель ИБ теплосчетчиков методом трафаретной печати, а на титульные листы паспорта и руководства по эксплуатации типографским способом.

IP64

Комплектность

Наименование и условное обозначение	Количество	Примечание
Измерительный блок теплосчетчика -регистратора "ЭНКОНТ"	1	
Ультразвуковой преобразователь расхода УПР	04 *	В комплектацию УПР входят ответные фланцы, паронитовые прокладки и необходимое количество болтов с гайками.
Комплект ПЭП с монтажными частями для УПР модификаций S000 I	04 *	
Комплект ПЭП с монтажными частями для УПР модификаций D000I	02*	
Блок питания 24В	1	По заказу
Комплект разностных термопреобразователей сопротивления (TC)	12 *	Тип и количество преобразователей в соответствии с заказом по табли-
Термопреобразователь сопротивления	14 *	це 1.
Преобразователи избыточного давления	04 *	Тип и количество преобразователей в соответствии с заказом по таблице 1.
Электромонтажный комплект в составе: - кабель РК-50-2-11 - кабель МКВЭВ - ответные части разъемов ИБ	4	Количество кабельных линий и их длина определяетсяв соответствии с заказом.
Комплект монтажных частей в составе: - держатель ТС; - защитная гильза ТС; - прокладка (паронит)	до 4	Количество определяется заказом термопреобразователей
Эксплуатационная документация в составе: - паспорт; - руководство по эксплуатации с методикой поверки; - эксплуатационная документация на составные части теплосчетчика	1 1 1	Эксплуатационная документация на составные части теплосчетчика, за исключением паспортов поставляется в одном экземпляре на каждый комплект составных частей.
Дополнительное оборудование: - преобразователь интерфейса RS485/RS232 с блоком питания; - блок питания для преобразователей давления; - модем с блоком питания; - модемный кабель; - приспособления для изготовления УПР модификаций S000I и D000I * - в зависимости от вида теплосистемы		Тип и количество - по согласова- нию с заказчиком

Поверка

Поверка теплосчетчиков осуществляется в соответствии с документом по поверке в составе эксплуатационной документации «Теплосчетчик -регистратор ЭНКОНТ. Руководство по эксплуатации ЭНКТ.407251.001РЭ», согласованным ГЦИ СИ ФГУП ВНИИР в августе 2008 г.

Основные средства, используемые при поверке, указаны в таблице 6.

Наименование	Технические характеристики
Проливная поверочная установка с эталон- ными массовыми расходомерами- счетчиками, мерниками и весами УРОКС-300	диапазон измерения расхода 0,02-300 м3/ч допускаемая относительная погрешность: при измерении эталонными расходомерами не более ±0,3 %; при измерении эталонными мерниками не более ±0,25 %; при измерении весами не более ±0,15 %;
Магазин сопротивлений Р4831	Класс точности 0,02/ 2 *10 ⁻⁶
Вольтметр универсальный типа GDM-8245 или Щ31	предел допускаемой основной погрешности по току : 0,2 % + 2 ед. мл. разряда.
Термометр лабораторный ТЛ-4 ГОСТ 215-73	цена деления - 0,1 °C, предел измерения от 0 до 100 °C.
Секундомер СОСпр-2б-2-000 "АГАТ" 4295В	
Нутромер микрометрический НМ-1250 ГОСТ 10	диапазон измерения - от 50 до 1600 мм; основная погрешность – 0,015 мм
Угломер с нониусом типа 2-2 модель 127 ГОСТ 5378-88	диапазон измерений: внутренних углов - от 40 до 180 наружных углов - от 0 до 360 допускаемая абсолютная погрешность 2′
Штангенциркуль ШЦ-П-500-0.1 ГОСТ 166-80	диапазон измерения 0 - 500 мм; цена деления — 0,1 мм; погрешность измерения — 0,1

Межповерочный интервал - 4 года.

Нормативные документы

ГОСТ Р 51649 -2000 «Теплосчетчики для водяных систем теплоснабжения. Общие технические условия».

ГОСТ 12997-84. «Изделия ГСП. Общие технические условия».

МИ 2412-97. «Рекомендация. ГСИ. Водяные системы теплоснабжения. Уравнения измерений тепловой энергии и количества теплоносителя».

МИ 2553-99 «Рекомендация. ГСИ. Энергия тепловая и теплоноситель в системах теплоснабжения. Методика оценивания погрешности измерений. Основные положения».

«Теплосчетчик -регистратор ЭНКОНТ. Технические условия. ЭНКТ. 407251.001ТУ».

Заключение

Тип теплосчетчиков - регистраторов ЭНКОНТ утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

Архангельск (8182)63-90-72 Астана (7172)/727-132 Астрахань (8512)99-46-04 Барнаул (3852)/3-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснолар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнепк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93